Carolina Biological Supply Company

Keep Calm and Chemistry On: Successful Lab Activities for the New Chemistry Teacher

#carolinaNSTA

Workshop Overview

- View and learn how to perform engaging demos
- Discuss phenomena and students connecting to the lesson
- Learn how to repurpose demos as 3D-instruction phenomena
- Showcase Carolina's chemistry kit offerings:
 - Carolina ChemKits[®]
 - Carolina Chemonstrations[®]
 - Carolina Digital Resources

Building Toward 3-Dimensional Learning

Scientific and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models	PS 1: Matter and its interactions	Cause and effect: Mechanism and
 Planning and carrying out investigations 	PS 3: Energy	explanationScale, proportion, and quantity
 Analyzing and interpreting data 		 Systems and system models
Constructing explanations		 Energy and matter: Flows, cycles, and conservation¹

Workshop Safety Featured Digital Content

Personal Safety Video

Carolina General Safety Video

Whoosh Bottle Phenomenon or Phenomenal?

Whoosh bottle video webinar segment 4:41–6:22

Aspects of Phenomena

- 1. Real world
- 2. Relevant
- 3. Potentially puzzling
- 4. Specific (has context)
- 5. Meaningful
- 6. Instructionally productive

Whoosh Bottle Video Segment 6:18-8:03

Aspects of Phenomena

1. Real world

Connects to an event or experience

2. Relevant

The demo itself is relevant or can be made relevant to the student

3. Potentially puzzling

Doesn't give itself away; students have something to figure out

4. Specific (has context)

More than student entertainment

5. Meaningful

Students will see value in figuring out the phenomenon

6. Instructionally productive

Builds toward performance expectations

Workshop Reminders

- PowerPoint[®] presentation for this workshop available at <u>www.carolina.com</u>
- Chemistry webinar available at <u>www.carolina.com</u>; type "webinar" in the search bar

Highly Visual Chemistry Phenomena for 3D Instruction - Web 44:30

Presenters: Matt Bostic and Chris Petersen, Carolina Product Developers Grades: 6–12

What are the aspects of good phenomena? How can you redesign classic, tried-and-true chemistry demos to support 3-dimensional learning? Find out in this webinar.

 Handout includes all demos and activities from the workshop, including Whoosh Bottle

Dem GoggesnOBelaker Ca Ani extrama constration mithrepasticess

Solid barium hydroxide octahydrate and solid ammonium chloride


Featured Digital Content

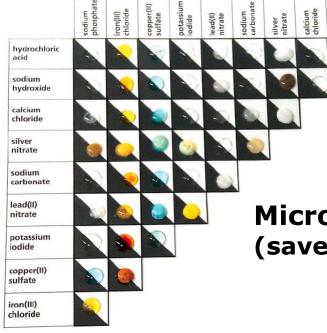
- Student guide copy master
- Fill-in answer sheets
- Editable assessment questions
- Whiteboard resources

This reaction may reach a temperature as low as -30° C.

Demo: Frozen Beaker An extreme endothermic reaction

Curriculum connections:

- Laws of thermodynamics
- Energy changes
- Endothermic vs. exothermic reactions


Possible discussion questions:

- What would be some practical real-world applications of an endothermic reaction?
- Could you measure the heat of reaction in this demo? If not, why?
- Are heat and temperature the same thing?

Lab: Mystery Chemical Reactions

sodium

Explore scientific phenomena

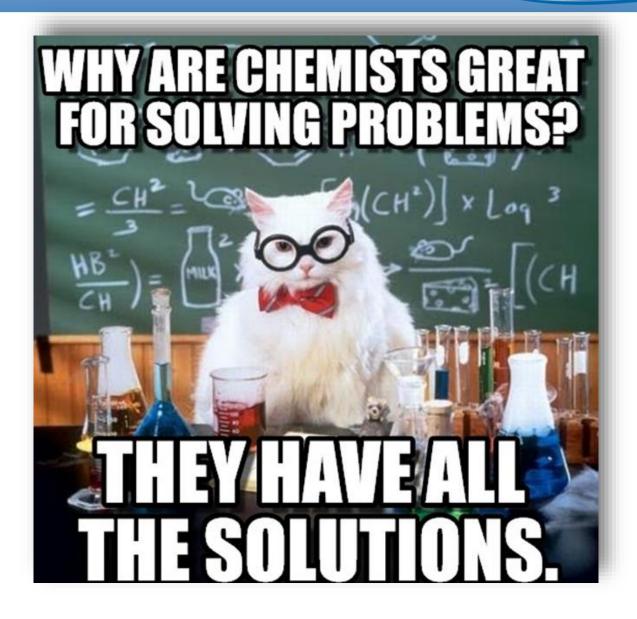
Identify visible signs of reaction (precipitate, gas, and/or color change)

Microscale chemistry benefits (save time and money; reduce waste)

Featured Digital Content

Interactive lessons

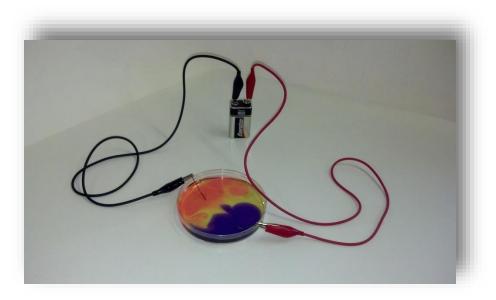
Lab: Mystery Chemical Reactions



Lab: Balancing Chemical Equations

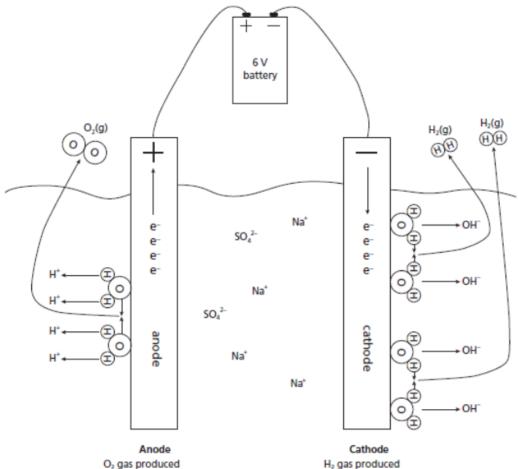
A tactile introduction to stoichiometry

- Understand the Law of Conservation of Mass
- Understand the difference between coefficients and subscripts in chemical equations



Lab: Petri Dish Electrolysis

Can we destroy water?


- Explore redox reactions
- Discover electrolysis and identify the products of water electrolysis
- Learn about electrolytes and pH indicators
- Observe visible signs of decomposition

Lab: Petri Dish Electrolysis

- **Color** = pH at electrode
 - Purple is basic, OH⁻ ions produced
 - Pink/orange is acidic, H⁺ ions produced
- Bubbles at electrodes
 - Higher volume is H₂
 - Lower volume is O_2
- Reduction happens at the cathode; H⁺ is reduced to H₂
- Oxidation happens at the anode; OH⁻ is oxidized to O₂
- Put together the evidence:
 - Purple electrode with more bubbles = Cathode
 - Pink/orange electrode with fewer bubbles = Anode

Example Particle Level Explanation Diagram

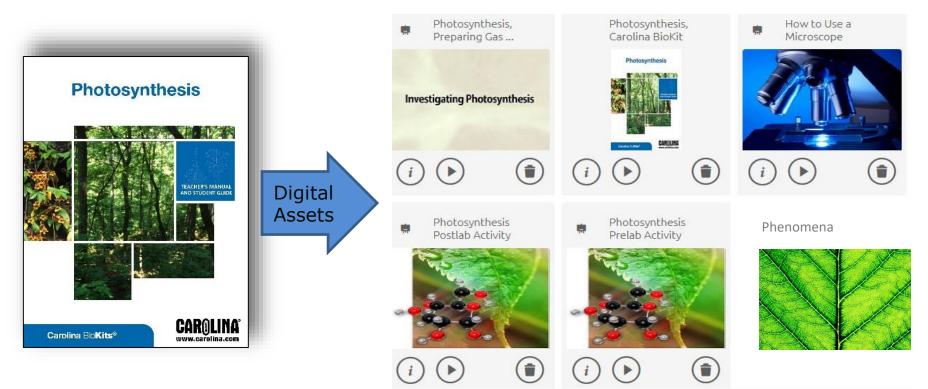
O₂ gas produced H⁺ lons produced Indicator turns pink (acidic)

H₂ gas produced OH⁻ lons produced Indicator turns purple (basic)

Workshop Kit Review

Carolina Chemonstrations®: Beaker Freezer Item # 840378

Carolina ChemKits®: Mystery Chemical Reactions Item #840660


Carolina ChemKits®: Petri Dish Electrolysis Item #840830

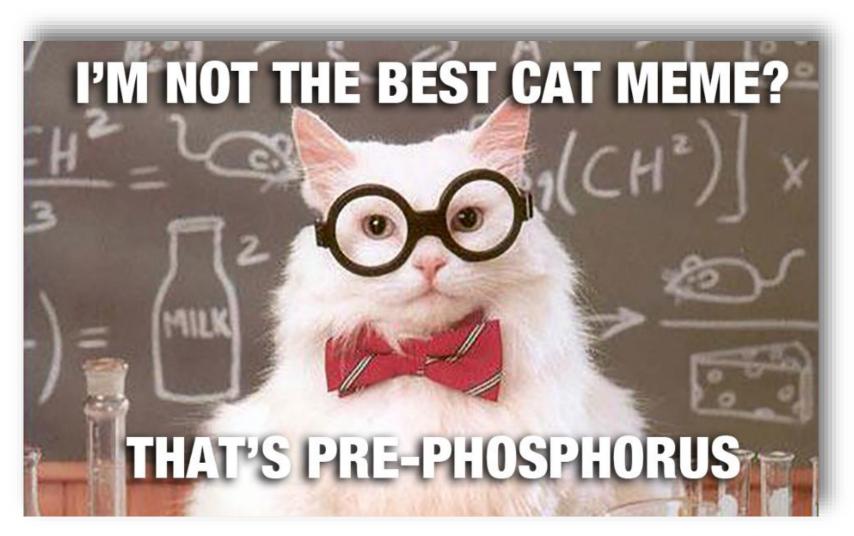
Carolina ChemKits®: Balancing Chemical Equations Item #840656

Kit Manuals & Digital Content Highlights

- Start with phenomena
- "Stop & Think," scaffolding
- Teacher tips
- Address NGSS
- Easy-to-follow format

- Digital teacher's manual
- Student guide copy master
- Fill-in answer sheets
- Editable assessment questions
- Whiteboard resources
- Phenomena videos

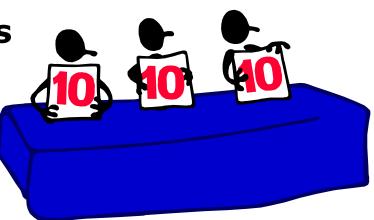
- Procedure/intro videos
- Pre-lab activity
- Post-lab activity
- Assessments
- Simulations
- Safety videos


Introducing . . .

Carolina[®] Spectroscopy Chamber (item #653355)

- Works with Android[™] and iOS[®] devices
- Uses free RGB color analyzer apps
- Does not require special optical glass tubes
- Affordable introduction to spectral analysis

Carolina Offers Free Resources to Support Teachers



Evaluations: Share Your Thoughts!

We are striving to make our workshops great!

Please evaluate this session and presenter on a scale from 0 to 10 (10 = best).

Please help us reset the room by gathering your belongings and exiting between sessions.

THANK YOU!

