Carolina Biological Supply Company

Engineer Physical Science
Excitement in Your
Classroom with a
a Carolina STEM
Challenge®

Workshop Overview

Carolina STEM Challenge® Subject Areas

- Physical Science
- Emerging Energies
- Life Science
- Chemistry

Today's Challenges

- Chemical Rockets
- Balloon Race Cars

Learning Context

- Elementary School
 - General science and inquiry
- Middle School
 - Physical Sciences: Energy transformations, forces and motion, and mathematical models
- High School
 - Physical Science: Energy transformations, Newton's laws, forces, and mathematical models
 - Physics: Energy transformations, Newton's laws, forces, and mathematical models
 - Earth and Space Sciences: Power generation, alternative energies
- Science Competitions
 - Science fairs
 - Science Olympiad
 - Science and engineering competitions and projects

Carolina STEM Challenge® Kits

- Warm-ups and demonstrations
- Science content (teachers and students)
- 3-dimensional learning
- Notebooking and differentiated instruction
- Grading and scoring rubrics
- Real-world connections
- Extensions (literacy and STEM activities)

Designed with ease of use in mind, Carolina STEM Challenge® kits have the materials and information needed for classroom success!

Workshop Rules

Safety

- PPE
- Latex

Liquids and Rocket Spray

- Clear tabletops
- Stow electronic devices

Stations

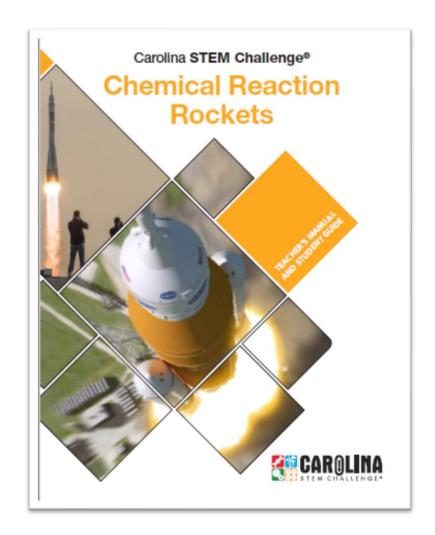
- Find a partner
- Share tool kits
- Keep your work space clean

HAVE FUN!

Building Toward 3-Dimensional Learning

Chemical Reaction Rockets

Scientific and **Engineering Disciplinary** Crosscutting **Practices Core Ideas Concepts PS1.B:** Chemical Developing and using Systems and system models: models: reactions: Develop a model to Substances react Models (e.g., physical, describe unobservable chemically in mathematical, characteristic ways. In a mechanisms. computer models) can chemical process, the be used to simulate atoms that make up the systems and original substances are interactions—including regrouped into different energy, matter, and molecules, and these new information flows substances have different within and between properties from those of systems at different the reactants. scales.1



Chemical Reaction Rockets

Activities Overview

Chemical Reaction Rockets

Activity:

Optimize the rocket design and chemical reaction of the "rocket fuel"

Challenge:

Highest launch with a payload

SEPs: Asking questions, planning and carrying out investigations, analyzing and interpreting data, engaging in argument from evidence

Rocket Test Procedures

- 1. Observe all safety protocols: Wear PPE, and keep rockets pointed away from people at all times.
- 2. One team member approaches the launch site with rocket pointed down and uncapped.
- 3. At the test site, you will receive your "launch training."
- 4. Once the rocket is set to launch, step back, and wait for the rocket to ascend.
- 5. Use the stopwatch to measure the time of descent between the rocket's highest altitude and its landing on the floor.

In case of a FAILURE TO LAUNCH, a Carolina representative will disengage the rocket and return it to you.

Building Toward 3-Dimensional Learning

Balloon Race Cars

Scientific and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and using models Diapping and carrying	PS 2A: Forces and motion: The motion of an object is determined by the sum of the forces	 Cause and effect: Mechanism and explanation
 Planning and carrying out investigations 	acting on it.	 Scale, proportion, and quantity
Analyzing and interpreting data	PS 3C: When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.	 Energy and matter: Flows, cycles, and conservation¹

NEW Carolina STEM Challenge® Kits

1. NGSS Lead States, *Next Generation Science Standards: For States, By States* (Washington, DC: The National Academies Press, 2013), retrieved from www.nextgenscience.org or ngss.nsta.org.

Balloon Race Cars

Activities Overview

Balloon Race Cars

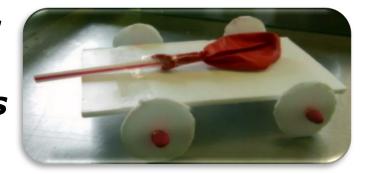
Activity:

Build a balloon-powered race car

Challenge:

Go the farthest distance

SEPs: Asking questions, planning and carrying out investigations, analyzing and interpreting data, engaging in argument from evidence



Workshop Summary

What did you learn?

- Chemical Rockets
- Balloon Race Cars

Newton's Laws, Gas Laws, Stoichiometry, Chemical Reactions

Newton's Laws, Force, Motion, Friction, Speed, Acceleration

Carolina STEM Challenge®

- **√** Easy to integrate
- High student engagement
- ✓ Engineering and STEM concepts
- ✓ Excite with real-world scenarios

PHYSICAL SCIENCE

EMERGING ENERGIES

Balloon Race Cars

Boats & Buoyancy

Biofuels

Build It Write

Cartesian Divers

Geothermal

Battery Dilemma

Hydroelectric Power

Egg Drop

Motors

Passive Solar Design

Solar Car Design

Mousetrap Cars

Paint Stirrer Catapult

Wind Farm

Solar Water Distillation

Projectile Launcher

Roller Coasters

Emerging Energies Set

CHEMISTRY

Sound Off

Balloon Rockets

Structures

Keep It Hot

Make It Bounce

Separation of a Mixture

Bubbles

Trebuchets

Chemical Reaction Rockets Crystal Growing

Take Flight

LIFE SCIENCE

Circulatory System

How to Train Your Isopod

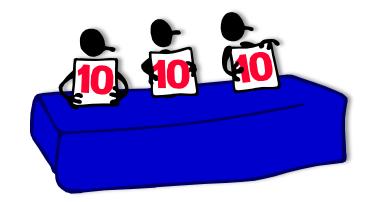
Hydroponics

How to Train a Plant

3-D Art and Human Vision

Carolina Offers Free Resources to Support Teachers

carolina tips®



Evaluations: Share Your Thoughts!

We are striving to make our workshops great!

Please evaluate this session and presenter on a scale from 0 to 10 (10 = best).

Please help us reset the room by gathering your belongings and exiting between sessions.

THANK YOU!

