

Engineer Physical Science Excitement in Your Classroom with a Carolina STEM Challenge®

Workshop Overview

Carolina STEM Challenge[®] Subject Areas

- Physical Science
- Emerging Energies
- Life Science
- Chemistry

Today's Challenges

- Chemical Reaction Rockets
- Balloon Race Cars

Learning Context

Elementary School

General science and inquiry

Middle School

 Physical Science: Energy transformations, forces and motion, and mathematical models

High School

- Physical Science: Energy transformations, Newton's laws, forces, and mathematical models
- Physics: Energy transformations,
 Newton's laws, forces, and mathematical models

Earth and Space
 Sciences: Power
 generation, alternative
 energies

Science Competitions

- Science fairs
- Science Olympiad
- Science and engineering competitions and projects

Carolina STEM Challenge® Kits

- Warm-ups and demonstrations
- Science content (teachers and students)
- 3-dimensional learning
- Notebooking and differentiated instruction
- Grading and scoring rubrics
- Real-world connections
- Extensions (literacy and STEM activities)

Designed with ease of use in mind, Carolina STEM Challenge® kits have the materials and information needed for classroom success!

Workshop Rules

Safety

- PPE
- Latex

Liquids and Rocket Spray

- Clear tabletops
- Stow electronic devices

Stations

- Find a partner
- Share tool kits
- Keep your work space clean

Building Toward 3-Dimensional Learning

Chemical Reaction Rockets

Science and Engineering Practices

Disciplinary Core Ideas

Crosscutting Concepts

Developing and using models

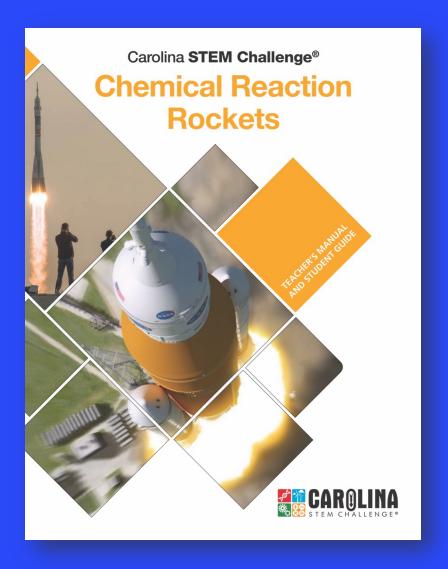
 Develop a model to describe unobservable mechanisms.

PS1.B: Chemical reactions

Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different molecules, and these new substances have different properties from those of the reactants.

Systems and system models

• Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales.¹


Carolina STEM Challenge® Kit Index

1. NGSS Lead States, Next Generation Science Standards: For States, By States (Washington, DC: The National Academies Press, 2013), retrieved from www.nextgenscience.org or ngss.nsta.org

Chemical Reaction Rockets

Activities Overview

Chemical Reaction Rockets

Activity:

Optimize the rocket design and chemical reaction of the "rocket fuel"

Challenge:

Highest launch with a payload

SEPs: Asking questions, planning and carrying out investigations, analyzing and interpreting data, engaging in argument from evidence

Rocket Test Procedures

- Observe all safety protocols: Wear PPE, and keep rockets pointed away from people at all times.
- 2. One team member approaches the launch site with rocket pointed down and uncapped.
- 3. At the test site, you will receive your "launch training."
- 4. Once the rocket is set to launch, **step back**, and wait for the rocket to ascend.
- 5. Use the stopwatch to measure the time of descent between the rocket's highest altitude and its landing on the floor.

In case of a FAILURE TO LAUNCH, a Carolina representative will disengage the rocket and return it to you.

Building Toward 3-Dimensional Learning

Balloon Race Cars

Science and	
Engineering	Practices

- Developing and using models
- Planning and carrying out investigations
- Analyzing and interpreting data

Disciplinary Core Ideas

PS 2A: Forces and motion

The motion of an object is determined by the sum of the forces acting on it.

PS 3C: When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.

Crosscutting Concepts

- Cause and effect:Mechanism and explanation
- Scale, proportion, and quantity
- Energy and matter: Flows, cycles, and conservation¹

Carolina STEM Challenge® Kit Index

1. NGSS Lead States, Next Generation Science Standards: For States, By States (Washington, DC: The National Academies Press, 2013), retrieved from www.nextgenscience.org or ngss.nsta.org

Balloon Race Cars

Activities Overview

Balloon Race Cars

Activity:

Build a balloon-powered race car

Challenge:

Go the farthest distance

SEPs: Asking questions, planning and carrying out investigations, analyzing and interpreting data, engaging in argument from evidence

Workshop Summary

Balloon Race Cars

Newton's Laws, Gas Laws, Stoichiometry, Chemical Reactions

Newton's Laws, Force, Motion, Friction, Speed, Acceleration

Carolina STEM Challenge®

- **✓** Easy to integrate
- **✓** High student engagement
- **✓** Engineering and STEM concepts
- **✓** Excite with real-world scenarios

Engineer. Engage. Excite.

Join us on social media to stay up to date with new kits and free lessons!

